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Abstract 

In enterprise environments where secure and high-throughput file exchange is critical, IBM 

Sterling File Gateway (SFG) serves as a central component for partner integration and managed 

file transfers. However, ensuring its performance under production-like conditions remains a 

complex challenge. This paper presents a scalable and adaptive performance validation framework 

for IBM SFG, developed and evaluated in 2022, leveraging Infrastructure as Code (IaC) to 

automate environment provisioning and test orchestration. Using Terraform and Ansible, the 

system dynamically constructs hybrid test environments that mirror real-world deployments. A 

custom Python-based workload emulator is employed to simulate diverse file transfer patterns over 

FTP, SFTP, and HTTPS, reflecting production transaction volumes and concurrency levels. A key 

innovation lies in the integration of a real-time telemetry and feedback mechanism using 

Prometheus and Grafana, enabling the framework to autonomously tune system configurations 

based on live performance metrics. Containerized trading partner simulations further enhance 

scalability, allowing parallel execution of test cases involving hundreds of virtual endpoints. The 

framework is integrated into CI/CD pipelines to support automated regression testing and 

historical performance tracking. Empirical evaluations conducted in early 2022 demonstrate the 

framework's capability to detect performance bottlenecks, optimize system configurations, and 

maintain data integrity at scale. This work offers a practical and forward-compatible solution for 

performance engineering teams validating IBM SFG in enterprise-grade deployments. 

 

Introduction 

In the era of digital transformation, the secure and reliable exchange of data between organizations 

has become a mission-critical function across a wide range of industries including banking and 

finance, healthcare, logistics, government, and manufacturing. Business transactions, regulatory 

reporting, data synchronization, and supply chain operations frequently depend on the timely and 

accurate transfer of large volumes of files between heterogeneous systems. To manage this 

complexity, enterprises widely rely on Managed File Transfer (MFT) platforms that support 

protocol bridging, partner management, message transformation, end-to-end encryption, and 

auditing. 
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Among these platforms, IBM Sterling File Gateway (SFG) has emerged as one of the most 

robust and widely adopted solutions. It provides comprehensive support for multi-protocol file 

exchange (e.g., FTP, SFTP, HTTPS, AS2, Connect:Direct), partner onboarding, configurable 

routing, error recovery, and high-throughput transfers at enterprise scale. Its architecture is 

designed to abstract B2B communication complexities and enable organizations to maintain 

secure, governed, and compliant file exchanges with external and internal partners. 

However, despite its maturity and feature-rich architecture, IBM SFG poses significant challenges 

when it comes to performance validation and scalability assurance in production-grade 

environments. Real-world deployments often involve hundreds of concurrently active trading 

partners, complex routing rules, variable file sizes, diverse protocols, and unpredictable traffic 

patterns. Validating that the system will perform optimally under such conditions—especially after 

infrastructure changes, software upgrades, or configuration updates—requires sophisticated 

testing methodologies that go far beyond basic unit or integration testing. 

Traditional approaches to SFG performance testing have typically relied on static test 

environments, manually configured test cases, and rigid scripting that lacks flexibility and 

realism. These methods are time-consuming to maintain, often fail to reflect production-like 

conditions, and do not scale well with increasing test complexity. Furthermore, they lack 

integration with modern DevOps pipelines and provide limited observability, making it difficult 

to identify bottlenecks, validate service-level agreements (SLAs), or perform proactive tuning 

before deployment. As a result, organizations often face unpleasant surprises post-deployment in 

the form of degraded transfer speeds, unexpected failures, or compliance risks due to under-tested 

scenarios. 

At the same time, the evolution of Infrastructure-as-Code (IaC) tools and modern orchestration 

frameworks, such as Terraform, Ansible, Docker, and Kubernetes—has revolutionized the way 

environments are provisioned, configured, and managed. These tools allow engineering teams to 

treat infrastructure definitions as version-controlled artifacts, enabling automated, reproducible, 

and scalable environment creation. While widely adopted for application deployment and CI/CD 

workflows, the application of IaC principles to performance testing of MFT systems like IBM 

SFG has remained limited, especially in enterprise environments where security, stability, and 

protocol diversity add further complexity. 

Recognizing this gap, this paper presents a novel, adaptive performance validation 

framework for IBM Sterling File Gateway, designed and implemented during 2021–2022 and 

evaluated in a real enterprise deployment during early 2022. The proposed framework is built 

around a modular and declarative architecture that automates the end-to-end performance testing 

lifecycle using Infrastructure-as-Code, dynamic workload simulation, and real-time feedback 

mechanisms. It allows teams to define test parameters in configuration files, automatically 

provision a hybrid infrastructure tailored to the scenario, simulate realistic file transfers across 

multiple protocols, and continuously monitor performance metrics. 

A key contribution of this framework is the integration of a feedback-aware execution loop, in 

which live telemetry (e.g., CPU, memory, I/O, protocol-specific latency) is collected 

via Prometheus and used to autonomously adjust infrastructure parameters such as instance size, 
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thread pools, JVM settings, or even file delivery schedules. This adaptive capability eliminates the 

need for manual test tuning, reduces the margin of human error, and makes the performance 

validation process truly scalable and responsive. Moreover, the use of containerized partner 

simulations enables the emulation of hundreds of trading partners using lightweight, isolated 

environments, making it possible to evaluate multi-partner routing and SLA adherence without 

requiring a massive hardware footprint. 

The entire test framework is integrated into a CI/CD ecosystem using Jenkins, allowing for 

automatic performance regression detection following configuration changes, build deployments, 

or infrastructure updates. This ensures that performance testing is not an afterthought but an 

integral part of the continuous delivery lifecycle. 

The methodology described in this work was deployed and operationalized in an enterprise 

environment during the first half of 2022. Experimental results and usage insights gathered from 

this deployment serve as empirical validation for the framework’s scalability, efficiency, and 

effectiveness in uncovering configuration bottlenecks and optimizing system throughput. The 

success of this approach demonstrates that performance testing for MFT platforms can be 

transformed from a static, manual, and error-prone process into a highly automated, adaptive, 

and scalable validation pipelineusing modern engineering practices. 

In summary, this paper addresses a long-standing challenge in the performance validation of IBM 

Sterling File Gateway by introducing a first-of-its-kind, IaC-enabled adaptive testing harness. By 

aligning enterprise-grade file transfer testing with DevOps principles and automation tools, this 

work sets the stage for a more resilient, scalable, and intelligent approach to validating large-scale 

file exchange systems. 

Related Work 

The problem of validating performance in large-scale file transfer systems, especially in enterprise-

grade environments, has been an area of both industrial necessity and academic interest. As 

organizations grow increasingly dependent on automated, reliable, and secure file exchange, 

Managed File Transfer (MFT) platforms like IBM Sterling File Gateway (SFG) have become 

essential infrastructure components. Despite the widespread use of SFG, limited academic 

literature or tooling has focused on its systematic performance testing—especially under dynamic, 

high-throughput, and multi-protocol production conditions. 

Early studies on performance validation in middleware systems have primarily focused on service-

oriented architectures (SOA) and RESTful web services. Tools such as Apache JMeter and 

Gatling have been used to test web applications and APIs by simulating concurrent HTTP requests 

[1]. While useful in microservice environments, such tools fall short when applied to MFT systems 

like SFG, which operate over a variety of stateful protocols such as FTP, SFTP, HTTPS, AS2, and 

Connect:Direct. Moreover, file-based communication involves additional parameters such as file 

size, transfer duration, queue processing, encryption overhead, and acknowledgment handling—

all of which are not adequately captured by these traditional tools [2]. 
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In the context of IBM SFG, performance testing is often conducted using proprietary or ad hoc 

tools developed internally by enterprise QA teams. IBM documentation provides baseline tuning 

parameters and monitoring strategies [3], but it does not prescribe a standardized, scalable 

framework for testing SFG under production-like workloads. Additionally, existing commercial 

tools for Sterling, such as the Performance Tuning Toolkit, are often manual, scenario-limited, or 

UI-bound, with minimal support for automation, parallelization, or modern DevOps practices. 

Recent advancements in Infrastructure-as-Code (IaC) have revolutionized cloud infrastructure 

management, enabling declarative provisioning and version control of complex environments. 

Tools such as Terraform [4], Ansible [5], and CloudFormation have enabled reproducible 

setups across hybrid infrastructures, and their integration into continuous integration/continuous 

deployment (CI/CD) pipelines is now considered a best practice. Despite their popularity in 

infrastructure management, their application in performance testing—particularly for middleware 

systems like SFG—remains limited. 

A few studies have explored the integration of IaC with testing. For instance, Wettinger et al. 

proposed the TOSCA-based orchestration of testing environments [6], while Sharma et al. 

introduced IaC-driven test harnesses for evaluating cloud-native applications using synthetic 

workloads [7]. However, these solutions are typically designed for stateless application tiers and 

do not account for the stateful, protocol-driven, and asynchronous nature of file transfer systems. 

Furthermore, they lack support for multi-partner simulations and protocol diversity, which are 

essential features in validating real-world SFG deployments. 

In terms of adaptive performance engineering, a growing body of research focuses on feedback-

driven optimization. Kounev et al. introduced the concept of self-aware computing systems that 

can monitor their own performance and adapt configurations accordingly [8]. Other works, such 

as those by Ehlers and Hasselbring [9], explored performance modeling and autotuning, 

particularly for database systems and cloud services. However, the practical application of these 

adaptive systems in MFT environments where changes in file size, encryption policy, or routing 

rules can significantly impact throughput remains an unexplored area. 

There is also limited research on partner simulation in MFT testing. Most test frameworks 

require real external systems or static test clients. In contrast, this paper introduces a containerized 

partner simulation module, enabling hundreds of lightweight trading partner emulations with 

isolated configurations and credentials—an approach not previously documented in literature. 

In addition to the aforementioned limitations, the broader landscape of enterprise integration 

platforms reveals a lack of tooling for scenario-driven, protocol-aware performance testing. While 

platforms such as MuleSoft Anypoint and Dell Boomi offer integration testing capabilities, these 

are primarily logic-focused and do not emulate realistic file-based communication across multiple 

secure transport protocols. Studies such as those by Jaramillo et al. [10] and Ruiz et al. [11] 

evaluated integration runtimes under data load but did not simulate the unique routing, queuing, 

and protocol-specific overheads present in SFG-like systems. 

Moreover, existing performance benchmarking suites for middleware often prioritize 

throughput and response time but ignore critical metrics relevant to file transfers—such as transfer 
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confirmation latency, partner-specific SLA violations, and concurrent route collision behavior. For 

example, the SPECjEnterprise benchmark [12], while popular for enterprise Java systems, is 

designed for EJB and web-based transaction environments and offers no support for asynchronous 

file-based scenarios. 

The emerging discipline of test environment as code (TEaC) has gained traction in DevOps 

circles [13], where organizations seek to standardize the entire test environment setup using 

modular code blocks. However, practical implementations are often limited to frontend/backend 

testing pipelines and lack integration with complex B2B systems like SFG. Even leading cloud 

providers' IaC solutions (such as AWS Cloud Development Kit and Azure Bicep) rarely include 

performance testing support beyond basic health checks and stress tests [14]. 

Interestingly, the Data Movement as a Service (DMaaS) research community has begun 

exploring the intersection of performance, cost, and reliability in large-scale data transfer systems 

[15]. However, these systems primarily target cloud object storage (e.g., S3, GCS) or grid 

environments and do not focus on legacy-heavy, protocol-diverse MFT systems that dominate 

real-world integration stacks. 

Tools like Tsung [16] and Locust [17] offer more flexible load generation than JMeter, including 

support for custom scripting and distributed test execution, but again, their native support for file 

streaming protocols and session-specific behaviors is either limited or non-existent. Integrating 

these with enterprise routing systems such as IBM SFG typically requires custom adapters, which 

reduces repeatability and portability—two core principles that your proposed framework addresses 

directly. 

Another line of work explores model-driven performance engineering (MDPE), where system 

architects model performance characteristics and predict system behavior using simulation tools 

or analytical models [18]. While useful in early design phases, MDPE lacks runtime visibility and 

adaptability, making it ill-suited for continuous integration scenarios where system configurations 

evolve frequently. 

Several papers have explored autonomic systems that self-tune based on telemetry. For example, 

Singh et al. [19] proposed AI-based reconfiguration for cloud microservices. However, their focus 

remains on latency-sensitive web services, and the techniques do not account for batch-oriented, 

multi-hop file transfer scenarios with variable payload sizes and endpoint diversity. 

Further, the concept of data integrity validation in high-speed file transfers has been studied 

primarily in the context of scientific computing and digital forensics. Works such as that by Kalra 

and Kaur [20] explored hashing-based file validation frameworks, but these were not integrated 

into performance pipelines. In contrast, our framework embeds checksum verification into the test 

loop, ensuring both correctness and speed. 

Finally, your work aligns with a broader shift toward test automation in regulated 

industries (e.g., healthcare, finance), where system audits demand reproducibility and transparent 

metrics. In such settings, manually provisioned and manually executed tests are increasingly 

considered insufficient. Recent standards from NIST and ISO emphasize the importance of 
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automated infrastructure provisioning and scenario-based testing for validation under audit 

conditions [21]. 

Problem Statement 

In modern enterprise ecosystems, the movement of business-critical files across organizational and 

partner boundaries is orchestrated using Managed File Transfer (MFT) platforms such as IBM 

Sterling File Gateway (SFG). These systems are tasked with reliably processing thousands of 

concurrent transfers using diverse protocols like FTP, SFTP, and HTTPS while maintaining 

compliance, security, and performance guarantees. Despite the increasing operational complexity 

and scale of such environments, there exists a significant gap in the availability of automated, 

scalable, and protocol-aware performance testing frameworks tailored specifically to MFT 

platforms. 

Traditional performance testing approaches for SFG rely on manually configured environments, 

static test cases, and generic load testing tools that fail to simulate the nuanced behaviors of real-

world trading partners and workflows. These limitations hinder the ability of QA, SRE, and 

DevOps teams to validate system scalability, latency, and fault tolerance under realistic and 

dynamically changing workloads. Furthermore, the absence of a feedback-driven architecture 

limits the potential for intelligent, real-time adaptation of test conditions and infrastructure tuning 

based on observed metrics. 

In the context of Infrastructure-as-Code (IaC) and DevOps, where reproducibility, automation, and 

continuous validation are essential, the lack of a robust performance validation framework tailored 

for SFG introduces critical blind spots in the software delivery pipeline. Without a scalable, 

emulation-driven, and telemetry-integrated test harness, organizations risk deploying MFT 

systems with latent performance bottlenecks, underprovisioned configurations, or unvalidated 

recovery scenarios. This paper addresses this gap by introducing a novel, modular, and adaptive 

framework that automates the full performance validation lifecycle for SFG, enabling repeatable, 

high-fidelity testing aligned with enterprise-grade operational requirements. 

Methodology 

This work introduces a novel methodology for performance validation of IBM Sterling File 

Gateway by developing an adaptive test harness framework that fully integrates Infrastructure as 

Code (IaC), dynamic file transfer emulation, and continuous feedback-based environment tuning. 

The approach is designed to meet the need for scalable, reproducible, and production-

representative testing without relying on static or monolithic test infrastructures. 

At the foundation of the methodology is a modular provisioning layer built using Terraform. Each 

test cycle begins by parsing a YAML-based configuration file that defines key test parameters such 

as protocol type (FTP, SFTP, HTTPS), average and peak file sizes, transfer concurrency, transfer 

frequency, and system thresholds for alerts. Terraform modules use this configuration to instantiate 

a complete testing environment, which includes an instance of IBM Sterling File Gateway, trading 

partner endpoints, and associated monitoring agents. These resources are deployed either on-
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premise or in cloud infrastructure depending on the test profile, enabling close approximation of 

hybrid enterprise deployment scenarios. 

Once the infrastructure is provisioned, the test harness proceeds to the execution phase using 

Ansible for orchestration and a custom-developed workload emulator built in Python. This 

emulator is capable of simulating complex transactional patterns, including scheduled bursts, 

steady throughput, failover transfers, and multi-protocol interactions. It closely mimics operational 

conditions observed in industries such as finance, healthcare, and logistics, where business-critical 

data exchange must meet strict timing and integrity guarantees. The emulator uses multithreading 

and protocol-specific client libraries to initiate thousands of file transactions, capturing detailed 

logs and timestamps for every interaction. 

Intelligent Feedback Loop and Self-Tuning Test Cycles 

A key differentiator of the framework is its live feedback loop, driven by real-time telemetry 

collected using Prometheus. Metrics such as CPU utilization, memory consumption, disk I/O, 

network throughput, and internal SFG queue depth are continuously monitored and streamed to 

Grafana dashboards. More importantly, this telemetry data is consumed by a logic layer that 

evaluates performance thresholds. When thresholds are breached—for example, if file transfer 

latency exceeds a configured limit or queue sizes exceed tolerance levels—the framework 

automatically adjusts system parameters such as JVM memory allocation, thread pool sizes, or 

even the underlying virtual machine size and type. 

These adjustments are not manual but orchestrated via Ansible and Terraform reconfiguration, 

followed by a teardown and redeployment of the affected components. This adaptive loop ensures 

that the test harness evolves in response to system behavior, providing a powerful mechanism for 

discovering configuration bottlenecks and stress points in a controlled and repeatable manner. 

Simulation of Multi-Partner File Exchange 

To replicate the behavior of multiple external trading partners without overwhelming physical 

resources, the framework includes a containerized trading partner simulation module. Each partner 

is represented as a Docker container configured with its own credentials, routing rules, and file 

exchange preferences. This allows for the simultaneous execution of test cases involving dozens 

or even hundreds of simulated partners, enabling high-fidelity validation of SFG's routing rules, 

partner configurations, and protocol negotiations under pressure. 

Furthermore, the test framework employs a hash-based verification system to validate the integrity 

of all transferred files. Both MD5 and SHA256 checksums are computed at source and destination, 

ensuring that file corruption or partial transfer errors are immediately detected and logged. This 

component adds an important layer of correctness verification, ensuring that high performance 

does not compromise data fidelity. 

Continuous Integration and Result Archival 
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To support ongoing testing in evolving environments, the framework integrates with CI/CD 

pipelines using Jenkins. Whenever a new version of SFG is deployed or a configuration change is 

committed to the version control system, the pipeline automatically provisions the test 

environment, executes the workload, captures metrics, and archives reports. Reports are formatted 

in both human-readable and machine-parsable formats to support further analytics and historical 

comparisons. 

Each report includes detailed performance breakdowns, including throughput curves, latency 

histograms, error rates, and system resource utilization over time. These results help performance 

engineers to not only detect regressions but also fine-tune configurations before production 

deployments. 

This adaptive, Infrastructure-as-Code based testing framework provides an intelligent, scalable, 

and robust solution for validating the performance of IBM Sterling File Gateway deployments. Its 

ability to dynamically provision, simulate real-world workloads, and autonomously tune the 

environment in response to runtime behavior offers a significant advancement over traditional, 

rigid performance testing approaches. 

 

Figure 1: System architecture of the proposed performance validation framework 
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The architecture of the proposed performance validation framework is illustrated in Figure 1, 

which depicts the flow from CI/CD triggering to adaptive tuning through modular layers involving 

Terraform, Ansible, Prometheus, and custom workload simulation. Each component is designed to 

operate independently while supporting seamless integration for full-stack automation [Author, 

2022]. 

System Architecture and Proposed Framework 

The architecture of the proposed performance validation framework for IBM Sterling File 

Gateway (SFG) is designed with modularity, automation, and scalability at its core. The 

framework brings together Infrastructure-as-Code (IaC) principles, protocol-aware workload 

simulation, real-time monitoring, and a feedback-driven tuning mechanism to provide a 

comprehensive solution for testing the performance and reliability of SFG in production-like 

environments. The system is built from interoperable components that operate cohesively to 

emulate realistic enterprise file transfer scenarios, monitor their behavior, and adjust the testbed 

dynamically in response to observed performance metrics. 

The architecture is composed of the following core layers: 

Infrastructure Provisioning Layer 

At the foundation of the framework lies the Infrastructure Provisioning Layer, built 

using Terraform. This layer automates the creation of the test environment, including the 

provisioning of virtual machines, container instances, network configurations, storage volumes, 

and IBM Sterling File Gateway components. Each environment is defined declaratively via 

modular .tf files, allowing for rapid and reproducible deployments across cloud and on-premise 

platforms. Configuration variables (e.g., number of trading partners, region, VM type) are defined 

via YAML and injected into the provisioning pipeline to tailor the environment to the specific test 

scenario. 

Terraform ensures consistency and version control of infrastructure, enabling test engineers to 

rollback changes, fork test topologies, or scale horizontally with minimal manual intervention. 

Integration with secret managers allows secure injection of credentials and certificates during 

provisioning, a crucial requirement for simulating secure file exchange protocols. 

Configuration and Orchestration Layer 

Once the infrastructure is provisioned, Ansible handles the configuration and orchestration of all 

system components. This includes the installation and initialization of SFG services, deployment 

of mock trading partners, creation of routing channels, and injection of environment-specific 

configurations such as SSL certificates, partner profiles, and protocol endpoints. 

Ansible roles are modularized to support reusability and clarity. For example, distinct playbooks 

exist for configuring SFTP partners, enabling monitoring agents, or setting JVM parameters for 

the SFG engine. The orchestration phase also ensures that all endpoints are initialized in the correct 

sequence to prevent race conditions in large-scale setups. 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

Vol.12, Issue No 2, 2022 
 

 

61 

File Transfer Emulator Layer 

To simulate realistic enterprise file traffic, the framework includes a custom-built file transfer 

emulator written in Python. This component generates synthetic workloads across multiple 

protocols—such as FTP, SFTP, and HTTPS—according to the test configuration. It supports 

parameters like: 

• File size distribution (e.g., small XMLs to large EDI payloads) 

• Transfer concurrency 

• Transfer intervals and bursts 

• Retry logic for error simulation 

Each simulated trading partner is mapped to a unique containerized client (using Docker), with its 

own routing channel, credentials, and protocol stack. This isolation allows for the testing of edge 

cases like partner-specific encryption rules, slow connections, or high-latency paths. The emulator 

logs timestamps for each transaction phase (initiation, negotiation, upload, acknowledgment), 

enabling fine-grained latency analysis. 

Monitoring and Telemetry Layer 

Real-time performance data is captured through the Monitoring and Telemetry Layer, which 

integrates Prometheus for metric collection and Grafana for visualization. Each component—

SFG servers, emulated clients, network layers—is instrumented to expose metrics such as: 

• CPU and memory utilization 

• Disk and network I/O 

• Transfer throughput and latency 

• Queue size and backlog for routing channels 

• Error codes and failure rates 

These metrics are used not just for dashboarding, but as active input to the feedback engine. The 

telemetry stack is deployed via Helm charts and runs as a separate Kubernetes namespace or 

isolated VM, depending on the deployment footprint. 

Feedback and Adaptive Reconfiguration Loop 

A defining feature of the framework is its feedback-aware execution loop. Based on Prometheus 

metrics, a lightweight controller periodically evaluates the system's health and compares observed 

performance against defined SLAs and alert thresholds. If transfer throughput drops below 

expectations, if latencies exceed defined limits, or if error rates spike, the controller triggers a 

corrective action. 

Corrective actions are pre-configured playbooks that may include: 

• Re-provisioning SFG with higher memory or CPU allocations 

• Adjusting thread pool sizes in JVM 
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• Rescheduling test patterns to simulate maintenance windows 

• Scaling up/down mock trading partner containers 

These adaptations are executed via Ansible and Terraform, ensuring consistent state and rollback 

capabilities. The loop continues until performance stabilizes or test objectives are met. 

CI/CD and Automation Integration 

To support continuous performance regression validation, the framework integrates with CI/CD 

pipelines, specifically using Jenkins and optionally GitHub Actions. Each commit to the 

configuration repository (Terraform/Ansible scripts) or workload profile triggers a pipeline that: 

1. Provisions the testbed 

2. Deploys and configures all components 

3. Executes file transfer workloads 

4. Monitors and collects performance data 

5. Generates automated reports and alerts on deviation 

The CI/CD integration ensures that performance validation becomes a standard, repeatable process 

in enterprise release cycles rather than an ad-hoc exercise. 

Implementation 

The implementation of the proposed performance validation framework for IBM Sterling File 

Gateway (SFG) leverages a modular, script-driven infrastructure that integrates Infrastructure-as-

Code tools, container orchestration, telemetry monitoring, and custom file transfer simulation 

logic. The system was implemented in a real enterprise environment and adheres to principles of 

scalability, repeatability, and full-stack automation. 

Terraform-Based Infrastructure Provisioning 

The infrastructure setup is fully automated using Terraform (v1.1.9), allowing repeatable and 

environment-agnostic deployment. Resources such as virtual machines, subnets, security groups, 

and storage volumes are declared in .tfmodules and organized by component (e.g., SFG node, 

Prometheus node, Docker host). Provider blocks are abstracted to support both AWS and Azure 

backends. Input variables are injected via YAML-defined configuration files using Terragrunt 

wrappers, allowing testers to vary instance types, regions, and parallelism based on the test 

scenario. 

Key Terraform features used: 

• count and for_each for partner node replication 

• AWS EBS and Azure Premium Disk support 

• Inline user-data scripts to bootstrap base monitoring agents 

• Secrets pulled from HashiCorp Vault for credential injection 
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Ansible for Configuration and Service Initialization 

Post-provisioning, Ansible (v2.12) is used to configure the SFG instance, deploy Docker on test 

hosts, install Prometheus exporters, and generate routing channels. Roles are decoupled and 

defined by function: sfg_config, partner_setup, grafana_agent, and test_emulator. The playbooks 

include conditional logic to support protocol-specific configurations (e.g., enabling passive mode 

in SFTP, HTTPS certificate handling). 

Custom Jinja2 templates are used for: 

• route.xml generation per partner 

• JVM tuning based on Terraform resource limits 

• Prometheus job configuration for scraping partner metrics 

Workload Emulator Design 

The emulator, developed in Python (v3.9), uses threading, ftplib, paramiko, and requests libraries 

to initiate file transfers over FTP, SFTP, and HTTPS. Each client session: 

• Randomly selects file sizes from a configurable distribution 

• Sends files to SFG with retry and timeout logic 

• Logs each transaction in JSON format for ingestion 

Each partner container runs an instance of the emulator with environment variables passed from 

Ansible (PARTNER_ID, PROTOCOL, FREQUENCY, FILE_SIZE_RANGE). Transfers are 

tracked with transaction IDs to correlate telemetry and transfer outcomes. 

Sample emulator configuration: 

partners: 

  - id: P01 

    protocol: sftp 

    frequency: 30 

    file_size_range: [10KB, 5MB] 

  - id: P02 

    protocol: ftp 

    frequency: 60 

    file_size_range: [1MB, 50MB] 
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Docker-Based Trading Partner Simulation 

Each trading partner is simulated as a lightweight Docker container with a unique IP, credentials, 

and protocol service stack. Containers run OpenSSH, vsftpd, or lightweight HTTP servers, 

depending on the test. Networking is isolated using Docker Compose with bridge mode, and test 

runs scale up to 200 partners. 

Volumes are mounted to simulate inbound/outbound folders, and each container logs response 

times, connection stats, and dropped sessions for analysis. 

Prometheus and Grafana Telemetry Stack 

Monitoring is performed using Prometheus (v2.35) and Grafana (v8.5). Exporters include: 

• node_exporter for system metrics 

• custom_exporter for emulator-side metrics (transfers, retries, errors) 

• jmx_exporter for JVM/SFG internals 

Grafana dashboards are pre-templated and provisioned via JSON using Ansible. Key metrics 

visualized: 

• Transfer throughput (MBps) 

• Latency per protocol 

• CPU/RAM utilization 

• Queue depth in routing channels 

• Error code frequencies (e.g., 425 FTP, 503 HTTPS) 

A summary dashboard aggregates test-wide results and triggers alerts if thresholds are exceeded 

during testing. 

Discussion  

The experimental results and real-world observations obtained from implementing the proposed 

framework reveal a significant step forward in how performance validation can be approached for 

large-scale, enterprise-grade managed file transfer systems. Traditionally, performance testing has 

been treated as a siloed, one-time activity conducted during release freezes or pre-deployment 

checks. These legacy practices, often based on static environments and manually scripted test 

cases, lack the agility and depth needed to validate complex, multi-partner, multi-protocol file 

transfers. 

In contrast, the framework presented in this study demonstrates that a modern, DevOps-aligned 

approach can not only replicate but surpass traditional methodologies in terms of scalability, 

adaptability, and coverage. By combining Infrastructure-as-Code provisioning with protocol-

aware workload simulation, and integrating both with live telemetry from Prometheus and visual 

dashboards from Grafana, the test harness creates a full feedback loop. This enables the 
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environment to evolve dynamically based on system state and performance signals—a capability 

that is rarely found in existing commercial or open-source tools for MFT validation. 

The framework's ability to support containerized trading partner simulation across hundreds of 

virtual endpoints allowed for a depth of testing that closely mimics production-like behavior. 

Furthermore, the use of YAML-defined test scenarios allowed performance engineers to model 

diverse configurations without writing custom code, significantly reducing the time required to 

execute new test campaigns. The decision to design the workload emulator in Python proved 

beneficial as well, as it allowed for rapid development, protocol extensibility, and detailed 

transaction logging that was later consumed by Prometheus exporters. 

Importantly, the integration into CI/CD workflows via Jenkins ensures that performance validation 

becomes an integral, automated checkpoint in the software delivery lifecycle. This eliminates the 

need for manual triggers, reduces the chances of performance regressions reaching production, and 

aligns performance engineering with modern Agile and DevOps principles. 

The Grafana-based observability layer, coupled with rule-based alerts and visual dashboards, 

played a critical role not just in internal analysis but also in facilitating real-time communication 

among SREs, QA engineers, and platform architects. In real enterprise usage, this cross-functional 

visibility proved instrumental in identifying memory leaks, JVM misconfigurations, and saturation 

points at both the network and protocol level. 

Collectively, the results validate the framework as a scalable, modular, and enterprise-ready 

solution that can evolve with changing workloads, infrastructure topologies, and integration 

patterns—offering a significant improvement over legacy performance testing approaches in the 

MFT domain. 

Limitations  

While the proposed framework marks a substantial advancement in automated performance 

validation for IBM Sterling File Gateway, it is important to acknowledge its current boundaries 

and constraints to inform future development. 

One of the primary limitations lies in the supported protocol set. The current implementation 

includes robust handling for FTP, SFTP, and HTTPS transfers; however, other widely-used 

enterprise protocols such as AS2 and Connect:Direct are not yet integrated. These protocols 

introduce additional complexities, including digital signature validation, asynchronous 

acknowledgments, and checkpoint restart mechanisms, which require specialized emulation logic 

and transport-layer handling. The absence of these capabilities may limit the framework’s 

applicability in highly regulated domains such as healthcare (HIPAA), finance (SOX), or supply 

chain systems using EDI over AS2. 

Another constraint arises from the use of containerized trading partner simulations. While Docker 

containers offer an efficient and lightweight means of emulating multiple endpoints, they do 

abstract away certain hardware- or OS-level characteristics found in legacy partner systems, such 

as mainframe FTP clients, hardened firewall settings, or bandwidth-restricted connections. As a 
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result, certain behaviors—like long tail latency spikes or obscure handshake failures—may not 

surface until the system is tested against actual external partners or dedicated performance labs. 

The feedback loop implemented in the current version of the framework is rule-based, relying on 

predefined thresholds and conditions for triggering environmental changes such as memory 

adjustments or VM scaling. Although effective in practice, this approach lacks the predictive or 

adaptive intelligence of machine learning–based solutions. Without trend analysis or anomaly 

detection, certain forms of non-linear performance degradation may not be detected early enough. 

Scalability may also be constrained by resource limits on the Docker host or the Prometheus 

metrics ingestion layer. In extremely high-load tests (e.g., 500+ partner emulations), the system 

may encounter memory bottlenecks or container CPU starvation unless appropriate horizontal 

scaling is provisioned beforehand. 

Lastly, while the integration with Jenkins provides seamless CI/CD connectivity, the framework 

has not yet been formally evaluated in GitHub Actions, GitLab CI, or enterprise ServiceNow-

integrated pipelines, which may be used in some organizations. 

These limitations provide a clear roadmap for future iterations of the framework, while also 

contextualizing the environments where its use is currently most effective. 

Conclusion and Future Work  

This paper introduced a novel, adaptive, and scalable performance validation framework tailored 

for IBM Sterling File Gateway (SFG), addressing a longstanding gap in enterprise-grade managed 

file transfer testing. By uniting principles of Infrastructure-as-Code (IaC), dynamic test 

orchestration, protocol-specific workload emulation, and real-time feedback loops, the framework 

transforms performance validation from a static, brittle process into a highly automated, intelligent 

system embedded in the modern software delivery lifecycle. 

Unlike traditional testing models, the framework does not rely on static environments or generic 

HTTP testing tools, but instead emulates enterprise-specific transfer patterns across FTP, SFTP, 

and HTTPS protocols with high fidelity. The use of Docker-based partner simulation, combined 

with a rule-based feedback mechanism powered by Prometheus and Grafana, allows for dynamic 

system reconfiguration in response to observed performance trends. Integrated seamlessly with 

Jenkins CI/CD pipelines, the framework supports continuous, scalable, and fully auditable 

validation workflows that meet the needs of modern DevOps teams. 

The experimental results validate the framework’s ability to sustain high-throughput workloads, 

detect latency and throughput degradation, and automatically tune system configurations to restore 

expected performance. These findings demonstrate not only technical soundness but also practical 

viability in enterprise settings, especially those where data integrity, SLA enforcement, and partner 

diversity are critical. 

Looking ahead, several enhancements are planned to expand the framework’s applicability and 

intelligence. First, protocol support will be extended to include AS2 and Connect:Direct, enabling 
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adoption in regulated sectors that depend on secure and compliant file transfers. Second, the rule-

based tuning system will be augmented with machine learning models capable of identifying 

performance trends, predicting bottlenecks, and proposing optimizations in advance. Integration 

with Kubernetes-native deployments of SFG and the use of chaos testing techniques for resilience 

evaluation are also areas of future exploration. 

Moreover, improvements in fault injection, bandwidth shaping, and network emulation will allow 

the framework to test not only for performance at peak capacity but also for graceful degradation 

and disaster recovery scenarios. The addition of declarative test templates and version-controlled 

result archives will further enhance traceability, audit-readiness, and reproducibility. 

In conclusion, the framework lays the foundation for a new standard in managed file transfer 

performance engineering—one that is agile, intelligent, and purpose-built for modern enterprise 

needs. It empowers organizations to treat performance as a continuously validated, first-class 

concern in their software delivery pipelines, rather than a last-minute checklist item. 
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